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We recently described the high-resolution X-ray structure of a
helical bundle composed of eight copies of theâ-peptide Zwit-1F
(Figure 1A,B).1 Like many proteins in nature, the Zwit-1F octamer
contains parallel and antiparallel helices, extensive inter-helical
electrostatic interactions, and a solvent-excluded hydrophobic core.
Here we explore the stability of the Zwit-1F octamer in solution
using circular dichroism (CD) spectroscopy, analytical ultracen-
trifugation (AU), differential scanning calorimetry (DSC), and
NMR. These studies demonstrate that the thermodynamic and
kinetic properties of Zwit-1F closely resemble those of natural
R-helical bundle proteins.

CD spectroscopy indicates that Zwit-1F is minimally 314-helical
in dilute solution (as judged by the molar residue ellipticity at 205
nm, MRE205)2 but undergoes a large increase in helical structure
between 20 and 200µM (Figure 1C). The concentration dependence
of MRE205 fits a monomer-octamer equilibrium with an association
constant of 4.0× 1030 M-7 (ln Ka ) 70.5 ( 1.9).3 This value
matches the result of AU analysis, which fits a monomer-octamer
equilibrium with lnKa ) 71.0( 0.9.3 Taken together, the AU and
CD data support a model in which unfolded Zwit-1F monomer is
in equilibrium with folded octamer.4

Examples of natural octameric proteins include the histones5

(hetero-octamer), TATA binding protein6 (octamer in 1 M KCl),
and the thermodynamically and structurally characterized hem-
erythrin (ln Ka ) 84).7 Although Zwit-1F is less stable than
hemerythrin, it is smaller in mass (13.1 vs 110 kDa) and interaction
surface area (7000 vs 15 000 Å2).1,8 To compare the stability of
Zwit-1F to that of proteins of diverse size and stoichiometry, we
calculated the free energy of association per Å2 of buried surface
area (∆Garea). Issues of molecularity aside, the∆Gareaof Zwit-1F
is higher than that of hemerythrin, the tetrameric aldolase, and

natural helical bundle proteins GCN4 and ROP (Table 1). In fact,
∆Garea for Zwit-1F is close to the average value (7.0( 2.8
cal‚mol-1‚A-2) observed for protein complexes burying at least
1000 Å2 of surface area upon association.9,10 The comparison
between Zwit-1F and hemerythrin implies that the lower affinity
of Zwit-1F is due to its small size and not an inherent instability
of â3-peptide complexes.

Temperature-dependent CD studies (Figure 2A) show Zwit-1F
to exhibit a concentration-dependentTm, an inherent property of
protein quaternary structure.14 The Zwit-1F Tm, which increases
from 57 °C at 50µM to 95 °C at 300µM, is comparable toTm

values of thermostable proteins such as ubiquitin (Tm ) 90 °C)
and bovine pancreatic trypsin inhibitor (Tm ) 101°C).15 The Zwit-
1F Tm is significantly higher than theTm of GCN4 (41-78 °C at
1-880 µM)16 and ROP (58-71 °C at 0.5-160 µM).17 We note,
however, that the unfolding of Zwit-1F is less cooperative: the
width of the temperature derivative of the CD signal at half-
maximum is 40 versus 20°C for GCN4 or 15°C for ROP.16,17

A high Tm is not a definitive measurement of thermodynamic
stability, so DSC was used to further characterize Zwit-1F unfolding
(Figure 2B). At 300µM concentration (where Zwit-1F is 87%
octameric), the temperature-dependent heat capacity (CP) peaks near
the Tm identified by CD. This peak is embedded in a sloping
baseline (∂Cp/∂T ) 5.1 cal‚mol-1‚K-2 ) 3.1 mcal‚g-1‚K-2) that is
similar to theCP versus temperature plot of monomericâ3-peptides,
for which no cooperative unfolding peak has yet been observed.2

For most natural proteins, (∂Cp/∂T) is about 1 mcal‚g-1‚K-2 in the
folded state,15 but GCN4 (∂Cp/∂T ) 3.6 mcal‚g-1‚K-2)16 and some
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Figure 1. (A) Helical net representation of the Zwit-1F monomer.â3-
Amino acids are designated by the single letter corresponding to the
equivalentR-amino acid. O signifies ornithine. (B) Zwit-1F octamer structure
determined by X-ray crystallography.1 (C) Plot of MRE205 as a function of
[Zwit-1F] fit to a monomer-octamer equilibrium. Inset: CD spectra (MRE
in units of 103 deg‚cm2‚dmol-1) at the indicated [Zwit-1F] (µM).

Table 1. Comparison of Protein Association Parametersa

protein (stoichiometry) MWmonomer ∆Garea

Zwit-1F (8) 1.6 kDa 5.9
hemerythrin (8) 13.8 kDa 3.37

aldolase (4) 39.2 kDa 3.911

GCN4 (2) 4.0 kDa 4.812

ROP (2) 7.2 kDa g3.013

a ∆Gareavalues in units of cal‚mol-1‚Å-2. Interaction surface areas and
∆Gareacalculated as described in Supporting Information.

Figure 2. (A) Temperature-dependent CD analysis of Zwit-1F. Plot of
MRE205 as a function of temperature at the indicated Zwit-1F concentration
(µM). (B) DSC analysis of Zwit-1F unfolding fit to a subunit dissociation
model. Raw data are shown as black circles.3
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ROP mutants (∂Cp/∂T ) 4-5 mcal‚g-1‚K-2)13 have sharply sloped
pretransition baselines like Zwit-1F.

The DSC data fit well to a process defined by a two-state
transition with dissociation of eight subunits using the program
EXAM.3,18 The fitted enthalpy and heat capacity change per mole
octamer are 107.4( 0.3 kcal‚mol-1 and 1.4( 0.1 kcal‚mol-1‚K-1,
respectively. Substituting these values into the Gibbs-Helmholz
equation3 yields an equilibrium constant of 5.3× 1031 (ln K )
73.3 ( 1.4) at 25°C, in excellent agreement with values derived
from CD and AU data. The integrated calorimetric unfolding
enthalpy (∆HCal) for Zwit-1F is 7.2 cal‚g-1, within the range
observed for natural globular proteins (5.2-11.8 cal‚g-1),19,20 but
somewhat lower than GCN4 (7.7 cal‚g-1)21 and ROP (9.5 cal‚g-1).17

The NMR spectra of many well-folded natural and designed
proteins are characterized by differentiated amide resonances and
slow hydrogen/deuterium exchange.22 The amide N-H resonances
in the1H spectrum of Zwit-1F, under conditions where the sample
is 97% octameric, span 1.4 ppm (Figure 3A). While this span is
narrower than that observed in the NMR spectra of large proteins
such asR-lactalbumin (3 ppm), it is comparable to that seen for
coiled-coil proteins GCN4 and ROP (1.3 and 2.2 ppm, respec-
tively).13,23,24In contrast to Zwit-1F, the amide resonances of the
poorly folded, monomericâ-peptide Acid-1YA2,11 span only 0.5
ppm.3 These results indicate that the Zwit-1F fold in solution creates
distinct electronic environments for the amide backbone protons.

Participation in a hydrogen bond can protect an amide N-H
from exchange with bulk solvent; since exchange occurs from the
unfolded state, a slow amide exchange rate constant (kex) correlates
with protein stability in solution.22 Exchange is often characterized
by a protection factor (P) equal tokrc/kex, wherekrc is the rate
constant for exchange of a random coil amide N-H under similar
conditions. When a lyophilized sample of Zwit-1F is redissolved
at 1.5 mM concentration in D2O, 9 of 14 resolvable peaks require
more than 4 h tobecome indistinguishable from baseline. The time
dependence of exchange corresponds to exchange rate constants
between 0.6× 10-4 and 2.9× 10-4 s-1. Using â-alanine (âG in
our nomenclature) as a random coil model,3,25 a kex value of 0.6×
10-4 corresponds to a protection factor of 2× 104 for Zwit-1F.
Thus, amide protons in Zwit-1F are less protected than those in
large protein cores, whereP g 105.22,26 However, the protection
factor for Zwit-1F, like the span of amide resonances, is comparable
to ROP (105 at 250µM)13 and GCN4 (104 at 1.0 mM).23,24 Acid-
1YA2,11 undergoes amide N-H exchange in less than 10 min,
showing that slow exchange requires a stableâ-peptide fold.3

The biophysical experiments presented here describe the ther-
modynamic and kinetic stability of the Zwit-1F octamer in solution.
The data allow us to quantify the similarity of Zwit-1F to GCN4
and ROP, two small, well-foldedR-amino acid helix bundle

proteins. In fact, theTm, ∆Garea, and∆HCal for Zwit-1F are even
comparable to much larger natural proteins. Taken together with
the recent high-resolution structure of Zwit-1F,1 these studies show
that â-amino acid heteropolymers can assemble into quaternary
complexes that resemble natural proteins in both solid-state structure
and solution-phase stability. We note that our characterizations do
not preclude some molten globule character of the Zwit-1F core in
solution.27 Nonetheless, these studies establish Zwit-1F as a
remarkably protein-like stepping stone in the path toward fully
synthetic mimics of biological molecules.
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Figure 3. (A) 500 MHz 1H NMR spectra of 1.5 mM Zwit-1F, acquired in
phosphate-buffered “H2O” (9:1 H2O/D2O) or at the indicated times after
reconstitution of a lyophilized Zwit-1F sample in phosphate-buffered D2O.
(B) Peak heights of the indicated resonances (normalized to the peak at
6.70 ppm) fit to exponential decays.3 Bars indicate standard error.
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